On ∇∗∗-distance and fixed point theorems in generalized partially ordered D∗-metric spaces
نویسندگان
چکیده
In this paper, we introduce a new concept on a complete generalized D∗-metric space by using the concept of generalized D∗-metric space (D∗-cone metric space) called ∇∗∗-distance and, by using the concept of the ∇∗∗-distance we prove some new fixed point theorems in complete partially ordered generalized D∗-metric space which is the main result of our paper. c ©2015 All rights reserved.
منابع مشابه
Fixed point theorems under c-distance in ordered cone metric space
Recently, Cho et al. [Y. J. Cho, R. Saadati, S. H. Wang, Common xed point theorems on generalized distance in ordered cone metric spaces, Comput. Math. Appl. 61 (2011) 1254-1260] dened the concept of the c-distance in a cone metric space and proved some xed point theorems on c-distance. In this paper, we prove some new xed point and common xed point theorems by using the distance in ordered con...
متن کاملGeneralized Weakly Contractions in Partially Ordered Fuzzy Metric Spaces
In this paper, a concept of generalized weakly contraction mappings in partially ordered fuzzy metric spaces is introduced and coincidence point theorems on partially ordered fuzzy metric spaces are proved. Also, as the corollary of these theorems, some common fixed point theorems on partially ordered fuzzy metric spaces are presented.
متن کاملFixed point theorems on generalized $c$-distance in ordered cone $b$-metric spaces
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
متن کاملSome Fixed Point Theorems in Generalized Metric Spaces Endowed with Vector-valued Metrics and Application in Linear and Nonlinear Matrix Equations
Let $mathcal{X}$ be a partially ordered set and $d$ be a generalized metric on $mathcal{X}$. We obtain some results in coupled and coupled coincidence of $g$-monotone functions on $mathcal{X}$, where $g$ is a function from $mathcal{X}$ into itself. Moreover, we show that a nonexpansive mapping on a partially ordered Hilbert space has a fixed point lying in the unit ball of the Hilbert space. ...
متن کاملCommon fixed point theorems of contractive mappings sequence in partially ordered G-metric spaces
We consider the concept of Ω-distance on a complete partially ordered G-metric space and prove some common fixed point theorems.
متن کاملRational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces
In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...
متن کامل